
Ecartis

Modular Mailing List Manager

http://www.ecartis.org/

Copyright c© 1998–2002 Rachel Blackman, JT Traub and contributors.

November 20, 2002

ii

Version History

2002-04-29 Rewrite from Listar docs to Ecartis docs; added paragraph to
Introduction about name change from Listar to Ecartis

iii

iv VERSION HISTORY

Notes About This
Document

The Ecartis manual is most definitely a work in progress. As is common with
many software projects, development of the software has far exceeded develop-
ment of the documentation to explain it; this is a shortcoming we are attempting
to address.

Discussion of this documentation should be directed to the mailing list
ecartis-doc@ecartis.org. Subscription information for the list is available at
http://www.ecartis.org. Anyone who has submissions they would like added
to the documentation, or has suggestions for rewording, changes, etc. to the
existing documentation should direct their comments to this list.

For purposes of portability, this documentation is currently maintained in
LATEX, a very simple, yet powerful text markup language that provides us the
ability to easily generate versions of this documentation formatted as PostScript,
PDF, HTML, or raw text. Those wishing to make direct changes to the docu-
mentation source should first familiarize themselves with LATEX2ε, and should
keep the ideal of portability in mind when making decisions regarding format.

v

vi NOTES ABOUT THIS DOCUMENT

Contents

Version History iii

Notes About This Document v

1 Introduction 1
1.1 What is a Mailing List Manager? 1
1.2 A Brief History of MLMs . 1
1.3 History of Ecartis . 3

2 Installation 5
2.1 Introduction . 5
2.2 Source Tarball Installation . 5
2.3 CVS Installation . 5
2.4 Compiling Under UNIX . 6
2.5 Compiling Under Windows . 7

3 Getting Started 9
3.1 Introduction . 9
3.2 Ecartis and Mail Filters . 9

3.2.1 Sendmail . 10
3.2.2 Exim . 11
3.2.3 Postfix . 11
3.2.4 qmail . 12

4 Configuring the Server 13
4.1 Primary (Global) Config File . 13

5 Setting Up a List 15
5.1 Creating the List . 15
5.2 Editing the List Configuration 16

6 Interacting with Ecartis 17
6.1 Concepts . 17
6.2 Normal Mode . 18
6.3 Secure (Administrator) Mode . 20

vii

viii CONTENTS

6.4 Web Interface . 21

7 List Moderation 23

8 Modules 25

9 Example List Configurations 27

10 Writing Modules 29

A Config Variables 31

Chapter 1

Introduction

1.1 What is a Mailing List Manager?

A mailing list manager is a piece of computer software which accepts a piece of
e-mail from a single source and distributes it to a number of recipients. Possible
uses for such a piece of software include a monthly newsletter for customers
of a business, a way to distribute information to users of a particular software
package — for example, notification of a security fix — or a way for people who
share a common interest to communicate with each other.

How people choose to implement mailing lists can vary widely. The simplest
method involves setting up a single address on an e-mail domain you control,
and forwarding it to a number of people. This has a number of disadvantages,
however; users have no way to add themselves to the list, or remove themselves
from it, there are no ways to restrict who can send mail to a distribution list,
and other such headaches.

Most people, therefore, choose to use a piece of software to manage such
lists for them; hence the term mailing list manager, or MLM for short. Many
people also refer to such packages as ‘list-servers,’ as they are server software
for managing lists. There are an ever-increasing number of MLMs available
out there, but almost all share certain common traits; the ability for users
to subscribe or unsubscribe themselves from a distribution list, the ability for
an administrator to manually remove a user, the ability to restrict posting to
a small number of individuals, and so on. In addition, some MLMs support
many additional advanced features, such as the ability to filter out unsolicited
commercial e-mail (UCE, also known as ‘spam’).

1.2 A Brief History of MLMs

Back in the mid-1980’s, the system of interconnected computers we know as
the Internet was not yet around. While in the United States, there was some
interconnection between colleges and the government’s ARPAnet, the only way

1

2 CHAPTER 1. INTRODUCTION

any other machines — such as those at different universities — communicated
was over a system called BITNET. BITNET machines let messages for each
other pile up, and then would call each other over the phone lines and send the
messages.

BITNET had a central control post, a Network Information Center (or NIC)
called ‘BITNIC.’ BITNIC kept a number of distribution lists for BITNET users.
However, the BITNIC’s lists were set up in the primitive way mentioned in
Section 1.1; a single address with no way for users to add themselves or remove
themselves. If you wished to be on a mailing list, you had to contact the BITNIC
staff and have them add you by hand.

Unfortunately, as BITNET grew larger, managing the lists by hand was no
longer feasible. Additionally, since all mail for BITNIC was affected by the
traffic of the lists — which by now were quite large — even private BITNET
e-mail was affected. It may be hard for users of today’s Internet to imagine, but
try to picture things becoming so slow that when someone sent you an e-mail,
it took over a week to arrive in your mailbox. Clearly, something needed to be
done.

Since the source of the problem was the traffic on BITNIC’s mailing lists,
a computer science student named Eric Thomas decided to write a piece of
software to replace the manually-managed mailing lists. It also used a number
of alternate paths to send e-mail to the list recipients, to keep it from clogging
BITNET’s mail pathways, but what was more important to the future of MLMs
was the fact that this software allowed users to add and remove themselves
from the lists, instead of relying on a BITNIC system administrator to do it
for them. When it went online in July 1986, a piece of software was managing
a mailing list for the first time — Eric Thomas had created the first MLM.
Soon thereafter, others created similar packages for other systems, such as the
LISTSERV imitation for UNIX, Listproc.

As time went on, Eric Thomas’ LISTSERV developed into a commercial
product beyond BITNET and was ported to other systems, and is still widely
used on the Internet today. However, as the days of BITNET faded into the
past and the Internet became a reality, students who wished to run their own
lists and did not have access to the funds necessary to purchase a license for
LISTSERV began to look at developing their own MLMs to meet their particular
needs.

Perhaps one of the most popular is Majordomo, which has been worked
on by a variety of people over the years. Majordomo is written in the Perl
scripting language, which is perhaps its greatest failing as it makes Majordomo
rather inefficient. However, Perl is very powerful for text processing, and thus
Majordomo is readily extendible by those who know Perl and are willing to
learn Majordomo’s source code.

A good — if somewhat biased — summary of the history of MLMs is avail-
able online from Lyris Technologies (who are themselves the authors of a com-
mercial MLM called Lyris, which is targeted specifically at business users) at
http://www.lyristechnologies.com/historyls.html

1.3. HISTORY OF ECARTIS 3

1.3 History of Ecartis

Ecartis was born as a simple little project called ‘uList’ (microList) in October
1997. The original author, Rachel Blackman, had been using the Majordomo
mailing list package but wished for one that was more efficient and did not
require any special system permissions to run. Additionally, Rachel wanted a
server that would allow the individual subscribers to change their subscription
options — one of the more desirable features of LISTSERV.

The original design for uList was simple enough; users needed to be able
to set a few simple options on themselves as well as perform all the standard
operations that most MLMs provide. However, Rachel got tired of having to
constantly rewrite the core processing code as new functionality was added, and
changed uList over to a modular system, where almost all of the system was
added to a changeable table of information. Suddenly, the system could be
easily changed; a new command could be added with only a few lines of code,
or a new step in processing a message to be sent. The small uList program
suddenly had more potential. And to go with the new design, the software got
a new name: Listar.

Listar developed into a more stable piece of software, and a mailing list was
set up using it called listar-dev, for those who were interested in the ongoing
development of the project. On January 12, 1998, Joseph (JT) Traub began
to work on the project as well. JT’s first contribution to the project was the
development of a ‘dynamic module’ system. Since Listar was already based
entirely around a dynamic model, this allowed new Listar plugin modules (or
LPMs) to be installed and immediately provide new commands, subscription
flags, or functionality.

The first public release of Listar came in February of 1998, and it was used
only by a few curious parties. However, many provided good feedback on fea-
tures and functionality they wished to see in such a project, and Listar grew
rapidly into a more mature program.

Then, tragedy struck. In October of 1998, the machine that Listar’s main
development resources were housed on was cracked into by a malicious indi-
vidual, and the mailing lists were destroyed. The Listar source code remained
safe in backup copies, but the lists themselves were no longer available. The
recovery from this event took a while, and development on Listar was slow again
afterwards at first, until users discovered the site was back and resubscribed to
the lists.

Once past the recovery, however, 1999 proved to be a year full of rapid
development for Listar. It became even further fleshed out, and began to be
used by some large organizations, such as the Internet Software Consortium.
The developers eagerly accepted suggestions and created new LPMs to add
custom functionality, while folding additional functionality into the core module.

Listar encountered one other setback late in 2000 (again in October) when
Rachel received a Cease & Desist letter from the company holding a trademark
for ListSTAR, a defunct MLM for Apple computers. Despite the obvious dif-
ferences in the names (Listar being “List” in Spanish; ListSTAR being List +

4 CHAPTER 1. INTRODUCTION

Star) no agreement could be reached, and in mid-2001 a name change for the
project was announced: Ecartis.

As of this writing, Ecartis approaches the fifth anniversary of its birth as
uList, and has a growing user base as well as a budding external developer
community. Some of the features that appeared first in Ecartis are now being
borrowed for other MLMs. Ecartis is an Open Source project, so users are
encouraged to join in creating code for it.

Chapter 2

Installation

2.1 Introduction

There are several ways that Ecartis can be obtained, and thus several methods
of installation. Perhaps the most common is as a collection of source code;
which will compile on any number of UNIX-type platforms, as well as Microsoft
Windows 95/98 or NT.

The package can also be obtained as an RPM (Redhat Package Manager)
installation, either from the Ecartis FTP site, or from RedHat’s PowerTools
collection or the RedHat Contrib—Net. It can also be obtained as a .deb file
for Debian GNU/Linux from the Ecartis FTP site or a local Debian mirror. Or
lastly, for those more inclined towards living on the edge of development, the
source repository for Ecartis is available for read via CVS.

This document makes the assumption that if you choose to download either
the .rpm or .deb versions of Ecartis to install, you already know how to use that
package manager to install it, and will thus only cover compiling from source
tarball, and compiling under Windows.

2.2 Source Tarball Installation

The Ecartis source tarball will unpack into a directory called ecartis-version,
where version is the version of the tarball you are unpacking. Fairly straight-
forward. Feel free to explore the directory tree before moving along to the
installation instructions for Unix (Section 2.4) or Windows (Section 2.5).

2.3 CVS Installation

CVS stands for ‘Concurrent Versions System,’ and is a method of allowing
multiple programmers to work on source code simultaneously, from a single
repository of source code. The Ecartis installation is designed to be able to

5

6 CHAPTER 2. INSTALLATION

work from a CVS installation, to make it easy to keep an installation up-to-date.
To access the Ecartis CVS tree, you need a CVS client capable of CVS-pserver
access.

Find the location that you wish to have your ‘ecartis’ tree, and enter the
following command:

cvs -d :pserver:guest@cvs.ecartis.org:/usr/cvsroot login

When it prompts you for a password, enter guest. Then type:

cvs -d :pserver:guest@cvs.ecartis.org:/usr/cvsroot checkout ecartis

You will see a list of filenames scroll by as CVS retrieves the current Ecartis
source tree, and then you will have a source tree as if you’d unpacked it from
the source tarball, except that it has a ‘CVS’ subdirectory in each directory;
this allows your installation to remain synched with CVS. Now, any time you
wish to get the latest version, go into the Ecartis directory and do:

cvs update -P -d

For information on CVS and CVS servers, visit Cyclic Software, the au-
thors of CVS, at http://www.cyclic.com/ — there are graphical CVS clients
available for several operating systems as well as binaries for various systems.

2.4 Compiling Under UNIX

To compile under a UNIX-style system (such as Linux, FreeBSD, SunOS, etc.),
Ecartis needs GCC or EGCS. While it is technically possible that Ecartis would
compile under the GCC for Windows that Cygnus provides, it is unlikely. Ecar-
tis has a specific Windows port; see Section 2.5 for more information.

The first step under UNIX is to go into the ‘src’ directory under where
you unpacked the tarball (or did a CVS checkout to). Copy Makefile.dist to
Makefile. Now you’ll want to pull Makefile up in your favorite text editor.
There are a variety of comments about what you’ll need to tune for specific
operating systems; tweak the file as appropriate for your operating system and
then save it. Now type ‘make’.

Ecartis uses the GNU Make program to handle the build process. Some
operating systems, like Linux, provide this as the default ‘make’ program, while
others, like FreeBSD, have it available as ‘gmake’. If you have BSD Make, when
you run ‘make’ in the Ecartis src directory, you will get a string of errors that
look like:

"Makefile", line 114: Need an operator

"Makefile", line 116: Need an operator

"Makefile", line 118: Need an operator

"Makefile", line 129: Need an operator

If this is the case, you will need to run ‘gmake’ instead of ‘make’. If the
build process is going correctly, you will see output like this:

2.5. COMPILING UNDER WINDOWS 7

gmake[1]: Entering directory ‘/home/loki/src/ecartis/src/modules/bounc

er’

gcc -fPIC -DDYNMOD -Wall -Werror -I../../inc -I. -DGNU_STRFTIME -c

bouncer.c

gcc -shared -o bouncer.lpm bouncer.o

cp bouncer.lpm ../../build

gmake[1]: Leaving directory ‘/home/loki/src/ecartis/src/modules/bounce

r’

[Build: bouncer] Built module successfully.

gmake[1]: Entering directory ‘/home/loki/src/ecartis/src/modules/lista

rchive’

gcc -fPIC -DDYNMOD -Wall -Werror -I../../inc -I. -DGNU_STRFTIME -c

archive.c

gcc -shared -o ecartischive.lpm archive.o

cp ecartischive.lpm ../../build

gmake[1]: Leaving directory ‘/home/loki/src/ecartis/src/modules/ecartis

chive’

[Build: ecartis] Built module successfully.

. . . and so on. The actual text of your output may vary slightly depending
on the system. Assuming no build errors occur, you should end up with a final
line that looks something like this:

gcc -o ecartis alias.o command.o user.o parse.o list.o core.o forms.

o smtp.o io.o regerror.o regsub.o regexp.o flag.o cookie.o file.o mod

ule.o fileapi.o variables.o internal.o cmdarg.o modes.o dynmod.o unmi

me.o codes.o hooks.o tolist.o mystring.o lma.o userstat.o snprintf.o

moderate.o mysignal.o unhtml.o liscript.o submodes.o lcgi.o upgrade.o

If there are no linker errors, you now have all the binaries you need. Type
‘make install’ (or ‘gmake install’) and it will place all the Ecartis binaries into
the appropriate places. If you wish to run Ecartis directly from this location, it
is now ready to go. Otherwise, you need to copy things elsewhere. If you are
using the dynamic module mode (Ecartis’s recommended configuration), there
is a directory under where you unpacked Ecartis which is called ‘modules’, and
contains a number of files with an .LPM extension. And in the directory where
you unpacked Ecartis is a binary executable called ecartis. The ecartis binary
should be placed wherever you intend to have your Ecartis installation, along
with the ecartis.cfg file. The modules should be placed into a modules directory,
which by default is a subdirectory called modules under wherever the ecartis
binary is. It is possible to split up Ecartis into a number of separate directories,
however, as the Debian installation does. At this point, you should have enough
information to move along to Section 3, Getting Started.

2.5 Compiling Under Windows

Ecartis can be compiled under Windows, but there are a few caveats. First,
it still functions as a mail filter, so you need a way to feed the mail to it;
many Windows mail servers do not function in this way. Secondly, it requires
Microsoft Visual C++ 5.0 or higher to compile.

8 CHAPTER 2. INSTALLATION

If these still meet your criteria, Ecartis is fairly easily compiled. When you
unpack the source tree, or do a CVS checkout, you will want to go to the top-
level directory, and load the ecartis.dsw file. Then you can simply go and do
a batch build of all the targets. In the end, you will have a debug and a re-
lease ecartis.exe, in src\debug\Ecartis.exe and src\release\Ecartis.exe.
You will also have src\modules\debug and src\modules\release, which will
contain debug and release builds of all the LPM modules. From here on out,
Ecartis is configured like any of the UNIX installations.

There is also a commercially supported mailing list package for Windows
which is based on Ecartis. It is called SLList and is sold and supported by
Seattle Lab, at http://www.seattlelab.com/.

Chapter 3

Getting Started

3.1 Introduction

Most MLMs function as a mail filter — in other words, a program that is invoked
when a piece of mail arrives for a specific address, and which is fed the mail that
arrived. How individual mail servers function with this varies; the widely-used
package sendmail uses a file called aliases to determine things like this, while
other packages such as qmail handle it differently. We’ll cover a few generic
pieces, and then a few specific mail servers.

3.2 Ecartis and Mail Filters

A list running on Ecartis has several addresses associated with it. The list ad-
dress itself (for example, foolist@domain.com), the list administrators (for exam-
ple, foolist-admins@domain.com), and so on. In addition, Ecartis has an address
for itself (ecartis@mydomain.com). Each of these addresses is represented by
an alias. The ecartis@mydomain.com address calls the Ecartis program without
any parameters, while the individual list ones have various parameters.

Hence, when you set up the Ecartis aliases for your system, you’ll probably
have a number of things looking like this:

Ecartis address

ecartis: |/home/ecartis/ecartis

Testlist aliases

testlist: |"/home/ecartis/ecartis -s testlist"

testlist-request: |"/home/ecartis/ecartis -r testlist"

testlist-admins: |"/home/ecartis/ecartis -admins testlist"

testlist-repost: |"/home/ecartis/ecartis -a testlist"

testlist-bounce: |"/home/ecartis/ecartis -bounce testlist"

This means that when some e-mail comes in for the ‘ecartis’ address, the
mailserver would run the program /home/ecartis/ecartis and pass the contents
of that e-mail to the program. The ‘testlist’ address, for example, will also run

9

10 CHAPTER 3. GETTING STARTED

the program, but it will have some additional parameters. If the aliases look a
bit confusing, don’t worry; Ecartis will generate them for you when you make a
new list, but if your mailserver isn’t sendmail, you may have to edit the way the
aliases look slightly. Most mailservers use an alias format similar — or identical
— to the sendmail format, so for most servers you will be able to use the aliases
that Ecartis generates directly.

3.2.1 Sendmail

Sendmail (http://www.sendmail.org) is perhaps the widest used mail server
on the Internet, and comes preinstalled on most UNIX-type systems. Sendmail
is extremely configurable — almost too configurable, as it is possible to get lost
in the configuration options — and is more than capable of using Ecartis as a
mail filter.

There are several ways to handle setting up Ecartis under Sendmail. Perhaps
the easiest is simply to copy and paste the aliases that you get from a Ecar-
tis newlist.pl script into the Sendmail /etc/aliases file, and run the newaliases
program. Others may prefer to create a separate aliases file for Ecartis; the
method to do this depends on how you’re setting up your sendmail config file.
The direct method is to go into the /etc/sendmail.cf file, find the line referring
to /etc/aliases, and add AliasFile line below it for the Ecartis aliases file.

Perhaps the most common pitfall of people setting up new Ecartis installa-
tions — or indeed, any new mail filter under Sendmail — is the fact that many
Sendmail installations come with a program called SMRSH already enabled.
SMRSH, or the SendMail Restricted SHell, is a program that increases system
security by making sure that Sendmail only allows programs in a certain direc-
tory to be run as mail filters. Where this directory is varies depending on your
Sendmail installation, but a common one is /etc/smrsh.

If any attempt to mail Ecartis meets with a bounce message like the follow-
ing, you are using SMRSH.

----- The following addresses had permanent fatal errors -----

"|/home/ecartis/ecartis -s mylist"

(expanded from: <mylist@mydomain.com>)

----- Transcript of session follows -----

sh: ecartis not available for sendmail programs

554 "|/home/ecartis/ecartis -s mylist"... Service unavailable

The solution is to locate the directory that SMRSH is using for its programs,
and write a shell script like this, placing it there.

#!/bin/sh

/home/ecartis/ecartis $@

3.2. ECARTIS AND MAIL FILTERS 11

Of course, /home/ecartis should be the path where you installed the Ecartis
binary. It is also vitally important to make sure that this wrapper script is set
executable so that smrsh can run it. Also make sure that the directory leading
up to the Ecartis binary has execute permissions for whatever user or group
your mail server runs as.

Then you’d want to go and change the aliases so that they had the path to
the shell script wrapper. For example, changing . . .

mylist: |"/home/ecartis/ecartis -s mylist"

. . . to . . .

mylist: |"/etc/smrsh/ecartis -s mylist"

. . . then Sendmail should allow Ecartis to be used as a mail filter.

3.2.2 Exim

Exim is another of the mail servers out there, though it doesn’t come pre-
installed on many — if any — systems. Information on it can be found at
http://www.exim.org/. Exim was developed at the University of Cambridge
over in England. To make Ecartis work with Exim, you could take the simple
approach like with Sendmail and paste the Ecartis aliases into the existing Exim
aliases file, or you can go into exim.conf and add the following lines:

ecartis_aliases:

driver = aliasfile

file_transport = address_file

pipe_transport = address_pipe

file = /usr/lib/ecartis/aliases

search_type = lsearch

user = ecartis

group = ecartis

Other than that, Ecartis should function correctly with Exim out-of-the-box.

3.2.3 Postfix

Postfix (http://www.postfix.org) is another mail server, designed with the
goal of creating a package as secure and fast as sendmail, while still providing
as much backwards compatibility as possible. For Postfix installations, you can
once again take the simple route and paste the Ecartis aliases into the default
aliases file and then run the postaliases program any time you change it.

If you wish to have a separate Ecartis aliases file, you will need to pull
/etc/postfix/main.cf up in your favorite text editor. Find alias maps line, and
add the ecartis aliases file to it. The resulting line will look something like:

alias_maps = hash:/etc/aliases, hash:/etc/mail/ecartis.aliases

Then run postalias /etc/mail/ecartis.aliases every time you add aliases to
the Ecartis file. Of course, /etc/mail/ecartis.aliases should be replaced by the
path to where you keep your Ecartis aliases file.

12 CHAPTER 3. GETTING STARTED

3.2.4 qmail

The qmail (http://www.qmail.org) program is perhaps the second most widely
used UNIX mail server on the Internet, being considered to be small, fast and
secure. However, the method of setting up qmail aliases is far different from
setting up aliases under any other mail package. Instead of a single file that
contains multiple aliases mapping through to Ecartis, you need to create what
are called dot-qmail files in the home directory of the qmail system user (often
‘alias’).

If the line in a normal aliases file would be . . .

mylist: |"/home/ecartis/ecartis -s mylist"

. . . then you would need to create a file in the home directory of the qmail
system user. This file would be named .qmail-mylist and which will contain the
text |"/home/ecartis/ecartis -s mylist"

You could create such a file by going to the appropriate directory and typing:

echo "|/home/ecartis/ecartis -s mylist" > .qmail-mylist

In other words, for a line like . . .

address: command

. . . you want . . .

echo "command" > .qmail-address

Unlike most mail servers, you do not need to run a program to rebuild aliases
under qmail.

Ecartis’s internal newlist command can create dot-qmail files for a given list;
to set up your Ecartis installation to do so by default, pull ecartis.cfg up in your
favorite text editor, and add the following line:

newlist-qmail = yes

Then, when you create a list, it will have a subdirectory called qmail-aliases,
and in that directory will be all the dot-qmail files you need to copy over to
your qmail global aliases directory.

You can force this feature on by adding the command-line argument -qmail
when creating a new list.

It is also worth noting that there is an optional add-on package for qmail by
Dan Bernstein called FastForward (http://www.pobox.com/~djb/fastfoward.html)
which allows qmail to use /etc/aliases.

Chapter 4

Configuring the Server

4.1 Primary (Global) Config File

13

14 CHAPTER 4. CONFIGURING THE SERVER

Chapter 5

Setting Up a List

5.1 Creating the List

Ecartis contains a set of commands internally to make it easier to create a
list. This entire process can be invoked from the command line and easily
controlled, and the various installed modules are responsible for generating the
configuration file and documenting it, as well as any other custom handling for
new list creation.

To begin this process, you will want to run the Ecartis binary with the
command-line argument -newlist; this takes one parameter, the name of the
new list. In addition, if you’re creating a list for a virtual host, simply put the
virtual host config file at the beginning of the line. Ecartis determines what
path to put in the aliases by what path you use when invoking it, so in this case
be sure to run it with a full path name. Here are two examples:

/home/ecartis/ecartis -newlist testlist

/etc/smrsh/ecartis -c virthost1.cfg -newlist testlist2

Ecartis will prompt you for the e-mail address of the list administrator; this
should be an address from which mail can be sent as well as received. Do not
use a forwarding address for the primary administrator of the list. Once you’ve
entered this information, the script will create the basic list configuration and
basic list directory. Then it will give you a block of information that looks
something like this:

Aliases for list ’testlist’

testlist: "|/home/ecartis/ecartis -s testlist"

testlist-request: "|/home/ecartis/ecartis -r testlist"

testlist-repost: "|/home/ecartis/ecartis -a testlist"

testlist-admins: "|/home/ecartis/ecartis -admins testlist"

testlist-moderators: "|/home/ecartis/ecartis -moderators testlist"

testlist-bounce: "|/home/ecartis/ecartis -bounce testlist"

testlist-owner: joe@mydomain.com

15

16 CHAPTER 5. SETTING UP A LIST

You will want to put this information into your mail server’s alias file, and
you may need to run a program to rebuild the aliases database (for example,
Sendmail users will need to run the newaliases program).

As a side note for advanced users, all the output Ecartis gives in this mode
OTHER than the aliases is on stderr, while the aliases are printed to stdout,
thus making it easy to simply redirect output and append it to your aliases file.

If you have Ecartis set up to use qmail instead (see Section 3.2.4), you will
not get the block of aliases, but will instead find that in the directory of your
new mailing list is a subdirectory called qmail-aliases; in this directory are the
dot-qmail files you will want to copy over to your qmail global aliases directory.

5.2 Editing the List Configuration

Now, you doubtless want to go tune a few of the default settings in the list
configuration file. Go to the directory where you have your Ecartis lists stored,
and go into the directory with the name of the list you just made. Bring the
config file up in your favorite editor, and edit to taste. There is an appendix of
configuration variables at the end of this document.

This section needs more detail.
Once you have things configured to your taste, you’re ready to move on to

your first interaction with Ecartis!

Chapter 6

Interacting with Ecartis

6.1 Concepts

Unlike many MLMs, Ecartis has something called a ‘list context.’ What this
means is that, much like someone in a conversation, Ecartis remembers what
the previous command in a session referred to. If you tell it to do a command
on list1 and then don’t give it a list name for the next command, it will assume
you are still talking about list1. If, however, you tell it to refer to list2 in the
second command, it will do so. How this works will become clearer as we move
along.

Ecartis also has what is called a ‘secure’ mode. Certain commands — such as
administrative functions — must be performed through a method that prevents
people from pretending to be you. Some MLMs only check the address a message
comes from before allowing administrative commands, leaving them open to
easy hacking by a mail-spoofer. Other MLMs use passwords, which could be
discovered. Ecartis uses a unique method which secures it in any situation
but that where either the machine that Ecartis runs on has been compromised,
or the e-mail account of an administrator has (something out of the realm of
control of an MLM). This method is referred to as using ‘cookies.’

Ecartis’s cookies are used for more than just administrative modes, as well.
When a cookie is “baked,” (created by Ecartis) it has a specific “flavor.” A
cookie of one flavor cannot be used for a task requiring a different flavor — for
example, a cookie for a user to confirm their subscription could not be used
to authorize administrative commands. If a cookie is used, it is “eaten” and
cannot be used again. If a cookie remains unused, eventually it goes stale and
is removed from the cookie jar. And lastly, a cookie can be baked for a specific
person, and then only that person can use it.

It is the cookie system that allows Ecartis to have much of the security and
power it does.

17

18 CHAPTER 6. INTERACTING WITH ECARTIS

6.2 Normal Mode

Normal mode is how the majority of users interact with Ecartis. This is where
you send e-mail to the Ecartis server itself with a set of commands. For example,
a user might send a message like this . . .

Date: Tue, 28 Sep 1999 23:26:32 -0700 (PDT)

From: Joe Q. User <joe@someisp.com>

To: ecartis@mydomain.com

Subject:

lists

which

end

And Ecartis would send back a message like . . .

Date: Tue, 28 Sep 1999 23:27:27 -0700 (PDT)

From: Ecartis <ecartis@mydomain.com>

To: joe@someisp.com

Subject: Ecartis command results: lists

>> lists

Ecartis lists available on this machine:

testlist

A test list.

>> which

Retrieving list subscriptions.

joe@someisp.com is subscribed to the following lists:

testlist

>> end

Command set concluded. No further commands will be processed.

Ecartis v0.126a - job execution complete.

In other words, each line of the message is parsed by Ecartis, which tries to
find a valid command in it. If there is a valid command in the subject line, it
will use that instead of parsing the body (unless configured to ignore the subject
line). What commands are available vary depending on the Ecartis installation,
since an LPM can add new commands.

Additionally, if you enclose what is called a “job/eoj wrapper,” Ecartis will
ignore everything except what is between the beginning and ending of the wrap-
per. (Multiple job/eoj wrappers can be used per message.) This is useful for
administrative functions, as you will see later.

// job

commands

// eoj

6.2. NORMAL MODE 19

When a command takes a list as one of the parameters, it turns that into the
list ‘context,’ and if you omit a list from the next command, it will assume you
mean the same list as before. When a command finally has another list given, it
will change the context for following commands. Whenever a command changes
the list context, you will be told in the results list:

List context changed to ’testlist’ by following command.

>> who testlist

Membership of list ’testlist’:

joe@mydomain.com (ADMIN)

jane@mydomain.com (ADMIN)

joe@someisp.com

>> stats

Current account flags for ’joe@mydomain.com’ on ’testlist’:

REPORTS

CCERRORS

ECHOPOST

MODERATOR

List context changed to ’testlist2’ by following command.

>> stats testlist2

Current account flags for ’joe@mydomain.com’ on ’testlist2’:

ADMIN

SUPERADMIN

ECHOPOST

REPORTS

CCERRORS

>> who

Membership of list ’testlist2:

joe@mydomain.com (ADMIN)

joe@someisp.com

In the above example, the user (joe@mydomain.com) sent the commands:

who testlist

stats

stats testlist2

who

Now you know how to issue commands to Ecartis, but what commands can
you issue? Well, there are a great many of them, and they vary from installation
to installation because of customization. Luckily, there is a way to query Ecartis
for what commands it supports. If you send Ecartis the command commands,
it will send back a list of what commands it supports on a given installation.
Some commands are only ever useful in messages Ecartis generates, such as for
secured-mode messages.

20 CHAPTER 6. INTERACTING WITH ECARTIS

6.3 Secure (Administrator) Mode

Obviously, there needs to be a way to issue administrative commands to Ecar-
tis; it isn’t feasible to expect every user to have access to the files on disk that
control a list they might potentially be an administrator on. But it is equally
obvious that it’s undesirable to have random unauthorized users able to issue ad-
ministrative commands. Clearly, some sort of authentication is needed. Ecartis
achieves this authentication with cookies, as mentioned before.

There are two ways to handle administrative commands, but they have the
same end result. The first method is to send Ecartis the command admin list.
If you are a valid administrator for list, Ecartis will send you what is called an
admin wrapper. This is something that looks like:

// job

adminvfy testlist 37F1C6FC:58BB.1:ybxvznvfbabgnxharg

adminend

// eoj

You want to fill out any administrative commands (things like getconf, or
setfor, which require administrative permissions) between the adminvfy and
adminend lines, and send the wrapper back to Ecartis.

The second method was added in a later version of Ecartis, and is more
convenient in most cases. Instead of sending the command admin list, send the
command admin2 list, and then give it the commands you want in the wrapper
followed by adminend2. That will send back the wrapper already filled out, and
you can simply hit ‘reply’ to approve it. This is also where job/eoj blocks come
in handy! Picture receiving a note from a user (say, joe@someisp.com) which
says that they need to be unsubscribed and can’t remember how. You could
simply reply and carbon-copy Ecartis, saying something like:

> Hey, sorry... I know I should know how to unsubscribe myself

> But...

> Could you unsubscribe me for me?

Sure!

// job

admin2 testlist

unsubscribe joe@someisp.com

adminend2

// eoj

Then you would receive back an already filled-out administrative wrapper
such as:

// job

adminvfy testlist 37F1C6FC:58BB.1:ybxvznvfbabgnxharg

unsubscribe joe@someisp.com

adminend

// eoj

6.4. WEB INTERFACE 21

Ecartis can parse reply-formatted messages in many cases (the exceptions
being the putconf command and moderated messages), so when you use the
admin2 command, you can simply hit reply to the wrapper it generates.

Any commands that are listed with an (ADMIN) after them in the com-
mands list that Ecartis will generate will only work between an adminvfy line
and an adminend line. Normal commands will also work between those lines,
but some have different uses; for example, the stats command normally func-
tions as stats list, to allow a user to view statistics on themselves for a list. But
in admin mode, you are locked to a specific list - the list you validated admin-
istrator permissions for - so the command you would enter instead is stats user,
to allow an administrator to view stats for a specific user on that list.

6.4 Web Interface

Information on LSG/2 needs to go here (after LSG/2 is finished).

22 CHAPTER 6. INTERACTING WITH ECARTIS

Chapter 7

List Moderation

Information on moderating mailing lists.

23

24 CHAPTER 7. LIST MODERATION

Chapter 8

Modules

Will give a listing of the default Ecartis modules (administrivia, etc.) and what
they provide.

25

26 CHAPTER 8. MODULES

Chapter 9

Example List
Configurations

Some useful list configurations, like an announcement list or a connected set of
lists like the nwcpp-discuss and nwcpp-announce lists, or the ecartis-support/ecartis-
dev/ecartis-announce setup.

27

28 CHAPTER 9. EXAMPLE LIST CONFIGURATIONS

Chapter 10

Writing Modules

Instructions on how to write a Ecartis module.

29

30 CHAPTER 10. WRITING MODULES

Appendix A

Config Variables

31

	Version History
	Notes About This Document
	Introduction
	What is a Mailing List Manager?
	A Brief History of MLMs
	History of Ecartis

	Installation
	Introduction
	Source Tarball Installation
	CVS Installation
	Compiling Under UNIX
	Compiling Under Windows

	Getting Started
	Introduction
	Ecartis and Mail Filters
	Sendmail
	Exim
	Postfix
	qmail

	Configuring the Server
	Primary (Global) Config File

	Setting Up a List
	Creating the List
	Editing the List Configuration

	Interacting with Ecartis
	Concepts
	Normal Mode
	Secure (Administrator) Mode
	Web Interface

	List Moderation
	Modules
	Example List Configurations
	Writing Modules
	Config Variables

